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Abstract

Piezoelectric materials have recently attracted considerable attention due to their potential use in intelligent
structural systems[ In this paper\ we treat the plane problem of thermopiezoelasticity with various holes and
subject to coupled mechanical\ electric and thermal loads[ An analytical solution is obtained by applying
the technique of conformal mapping and some identities in the Stroh formalism[ The solution has a simple
uni_ed form for various holes such as ellipse\ circle\ triangle and square[ By way of the solution\ the
expressions for the energy release rate and stress intensity factors of cracks are presented[ Numerical results
for concentration coe.cients of stress and electric displacement along the hole boundary are given to assess
the acceptability of the proposed method[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

There has been considerable work done on the problem of determining the state of stress in an
elastic solid containing a two!dimensional "1!D# cavity under the condition of plane strain or plane
stress[ Among the methods\ Airy stress functions "Greenspan\ 0833# and the complex variable
method "Jasiuk et al[\ 0883# are often used[ Evan!Iwanoski "0845# used the complex variable
approach to derive the stress solutions for an in_nite isotropic plate with a triangular inlay[
Zimmerman "0875# studied the compressibility of holes by way of conformal mapping of a hole
onto a unit circle[ Kachanov et al[ "0883# developed a uni_ed description concerning both cavities
and cracks[ For orthotropic plates with rectangular openings\ work has been done by Jong "0870#
and Rajaiah and Naik "0872#[ Their results were based on the solutions given by Lekhnitskii
"0857#\ which are only approximate solutions due to the mathematical di.culties involved[ In the
literature\ however\ there are very few works dealing with thermal stresses disturbed by holes in
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an elastic material[ Florence and Goodier "0859# studied the thermal stress for an isotropic medium
containing an insulated oval hole[ Based on the complex variable method\ Chen "0856# studied
the case of an orthotropic medium with a circular or elliptic hole\ and obtained a complex form
solution for the hoop stress around the hole[ For plane piezoelectric material without considering
thermal e}ect\ Pak "0889# and Sosa "0880\ 0881# analysed some of the characteristics governing
the electromechanical phenomena that arise in piezoelectric media containing defects[ Zhang and
Tong "0885# studied the fracture problem for a mode III crack in a piezoelectric material[ Recently\
Hwu "0889b# obtained the thermal stress for an anisotropic elastic plate with an elliptic hole
subjected to remote uniform heat ~ow in the x1!direction[ His analysis was based on the Stroh
formalism and conformal mapping[

The purpose of this paper is to present a uni_ed description for a plane thermopiezoelectric
sheet with a hole of various shapes and subjected to mixed mechanical\ electric and thermal loads[
Based on the extended Stroh formalism and conformal mapping\ an explicit solution for the hole
problem is obtained through an appropriate assumption of the form of an arbitrary function F"Z#
and utilising some known identities "Ting\ 0877#\ which enable us to convert the complex form
solution into a real form[ Using the solution\ the expressions for the energy release rate and stress
intensity factors of cracks are obtained[ Numerical results for concentration coe.cients of stress
and electric displacement along the hole boundary are presented and comparison is made with
those obtained from _nite element method[

1[ Basic equations and expressions

In this section\ we shall recall brie~y the governing _eld equations and some expressions of plane
thermopiezoelectric medium[ For a complete derivation and discussion the reader may refer to
Wu "0873# and Yu and Qin "0885#[ Consider a 1!D thermoelectroelastic problem\ where all _eld
quantities are functions of x0 and x1 only[ For convenience\ shorthand notations introduced by
Barnett and Lothe "0864# are adopted in the paper[ In the stationary case when no free electric
charge\ body force and heat source are assumed to exist\ the complete set of governing equations
for uncoupled thermo!electroelastic problems are "Mindlin\ 0863#

hi\i � 9

PiJ\i � 9 "0#

together with

hi � −kijT\j

PiJ � EiJKmUK\m−xiJT "1#

in which

PiJ � 6
sij i\ J � 0\ 1\ 2

Di J � 3 ^ i � 0\ 1\ 2



Q[!H[ Qin et al[ : International Journal of Solids and Structures 25 "0888# 316Ð328 318

UJ � 6
uj J � 0\ 1\ 2

q J � 3
"2#

xiJ � 6
gij i\ J � 0\ 1\ 2

`i J � 3 ^ i � 0\ 1\ 2

EiJKm �

F

G

j

J

G

f

Cijkm i\ J\ K\ m � 0\ 1\ 2

emij K � 3 ^ i\ J\ m � 0\ 1\ 2

eikm J � 3 ^ i\ K\ m � 0\ 1\ 2

−kim J � K � 3 ^ i\ m � 0\ 1\ 2

"3#

where T and hi are temperature change and heat ~ux\ ui\ q\ sij and Di are elastic displacement\
electric potential\ stress and electric displacement\ Cijkm\ eijk and kij are elastic moduli\ piezoelectric
and dielectric constants\ and kij\ gij and `i are the coe.cients of heat conduction\ thermal!stress
constants and pyroelectric constants\ respectively[ A general solution to "0# can be expressed as
"Wu\ 0873 ^ Yu and Qin\ 0885#

T � 1 Re "`?"zt##

U � 1 Re ðAF"Z#q¦c`"zt#Ł "4#

with

A � ðA0 A1 A2 A3Ł

F"Z# � diag ðF"z0# F"z1# F"z2# F"z3#Ł

q � "q0 q1 q2 q3#T

zt � x0¦tx1

zi � x0¦pix1

in which {Re| stands for the real part\ the prime "?# denotes di}erentiation with the argument\ `
and F are arbitrary functions to be determined\ qi are complex constants determined by the related
boundary conditions\ pi\ t\ A and C are constants determined by

k11t
1¦"k01¦k10#t¦k00 � 9

ðQ¦"R¦RT#pi¦Tp1
i ŁAi � 9

ðQ¦"R¦RT#t¦Tt1Łc � x0¦tx1 "5#

in which superscript {T| denotes the transpose\ xi are 3×0 vectors\ and Q\ R and T are 3×3
matrices de_ned by

xi � "gi0 gi1 gi2 `i#T\ "Q#IK � E0IK0\ "R#IK � E0IK1\ "T#IK � E1IK1 "6#

The heat ~ux h and the stress!electric displacement "SED# P obtained from "1# can be written
as
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hi � −1 Re ""ki0¦tki1#`ý"zt##

P0J � −fJ\1\ P1J � fJ\0 "7#

where f is the SED function given as

f � 1 Re "BF"Z#q¦d`"zt## "8#

with

B � RTA¦TAP � −"QA¦RAP#P−0

P � diag ðp0 p1 p2 p3Ł

d � "RT¦tT#c−x1 � −"Q¦tR#c:t¦x0:t "09#

Further\ some identities are introduced in order to make the ensuing derivation tractable[
Following Barnett and Lothe "0864#\ Ting "0877#\ and Chung and Ting "0884#\ it can be shown
that the following identities are valid ]

1AP"v#AT � N1"v#−iðN1"v#ST¦N0"v#HŁ

1AP"v#BT � N0"v#−iðN0"v#S−N1"v#LŁ "00#

1BP"v#AT � NT
0 "v#−iðNT

0 "v#ST¦N2"v#HŁ

1BP"v#BT � N2"v#−iðN2"v#S−NT
0 "v#LŁ "01#

where P"v# is a diagonal matrix de_ned by

P"v# � diag ðp0"v# p1"v# p2"v# p3"v#Ł

in which v is a rotation angle\ and

pi"v# �
pi cos v−sin v

pi sin v¦cos v

N0"v# � −T−0"v#RT"v#\ N1"v# � T−0"v#

N2"v# � R"v#T−0"v#RT"v#−Q"v#

QJK"v# � ni"v#EiJKmnm"v#\ RJK"v# � ni"v#EiJKmmm"v#

TJK"v# � mi"v#EiJKmmm"v#

n � "cos v sin v 9#T\ m � "−sin v cos v 9#T

while S\ H\ L are 3×3 real matrices introduced by Barnett and Lothe "0864# ]

S � i"1ABT−I# �
0
p g

p

9

N0"v# dv

H � 1iAAT �
0
p g

p

9

N1"v# dv
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L � −1iBBT �
−0
p g

p

9

N2"v# dv "02#

where I is the unit tensor\ i � z−0\ H and L are symmetric and positive de_nite\ and SH\ LS\
H−0S and SL−0 are anti!symmetric[

2[ Solution to the hole problem

2[0[ Boundary conditions

Consider a plane thermoelectroelastic problem of a single insulated hole in a piezoelectric sheet
which is subjected to uniform remote heat ~ow h9 and SED P9[ The hole boundary is assumed to
be traction!charge free with zero heat ~ow[ Additionally\ the hole can be thought of as being _lled
with air\ which has a dielectric constant approximately three orders of magnitude smaller than the
dielectric constant of the piezoelectric material[ The consequence of such an assumption is that the
boundary conditions on the hole boundary are given by P = m � 9\ where m is outward normal to
the hole boundary[ This is also equivalent to setting Eh � 9\ where Eh stands for the material
constants of the hole!phase[ Discussions on the validity of the electrical boundary conditions can
be found in the literature "Dunn\ 0883 ^ Parton and Kudryatvsev\ 0877#[

To study the e}ect of the hole on the thermo!electroelastic _eld\ it su.ces to consider the
associated problem in which the hole surface satis_es the conditions

hm � h9
0 sin u−h9

1 cos u

tm � −P9
1 cos u¦P9

0 sin u "03#

along the boundary\ where the subscript {m| denotes normal direction to the hole boundary "see
Fig[ 0#\ u is an angle also shown in Fig[ 0[ tm is the surface traction\ P9

0 � "s9
00 s9

01 s9
02 D9

0#T\
P9

1 � "s9
10 s9

11 s9
12 D9

1#T\ and by using the coordinate transformation as well as applying "7#\
we have

hm � −h0 sin u¦h1 cos u � 1k½ Im ""cos u¦t sin u#`ý"zt##[ "04#

Here {Im| stands for the imaginary part\ k½ � zk00k11−k1
01[ Since tm is the surface traction at a

point on the hole boundary\ it can also be written as

tm � 1f:1n "05#

where n is the arc length measured along the hole boundary in the direction such that\ when one
faces the direction of increasing n\ the material is located on the right!hand side "see Fig[ 0#[ Thus\
the boundary condition along the hole boundary\ "03#1\ can be replaced equivalently by

f � −x0P9
1¦x1P9

0¦K9\ along the hole boundary "06#

where K9 represents a kind of rigid body motion[ Since the rigid body motion is of no interest\ we
assume that K9 � 9[
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Fig[ 0[ Geometry of a particular hole "a � 0\ e � 0\ k � 3\ h � 9[0#[

2[1[ Conformal mappin`

In our analysis the contour of the hole is described by "Hwu\ 0889a#

x0 � a"cos c¦h cos kc#

x1 � a"e sin c−h sin kc# "07#

where 9 ³ e ¾ 0\ k is an integer\ and c is a real parameter[ By appropriate selection of the
parameters e\ k and h\ we can obtain various special kinds of holes\ such as ellipse\ circle\ triangular\
square and pentagon[

Recall from complex theory that if we have two complex domains in the z and z planes\
respectively\ the conformal transformation is given by

z � w"z# "08#

where w is a holomorphic function and z � reic\ where r and c are a pair of polar coordinates[ To
transform the exterior of a unit circle in the z plane onto the exterior of the hole in the z plane\ we
use the following transformation "Hwu\ 0889a# ]

za � a"a0z¦a1z
−0¦a2z

k¦a3z
−k# "19#

in which

a0 � "0−ipae#:1\ a1 �"0¦ipae#:1
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a2 � h"0¦ipae#:1\ a3 � h"0−ipae#:1 "10#

The technique of conformal transformation tells us that `"zt# and F"Z# may be chosen as

`"zt# � `�"zt#\ F"Z# � F�"z# "11#

where `� and F� can be expressed as some simple functions of z[

2[2[ Solution to temperature and electroelastic _elds

We _rst study the solution to temperature T[ Noting that along the hole boundary x0 and x1 are
expressed by "07#\ and z � eic\ the boundary condition "03#0 suggests that the arbitrary function
`"zt# ought to be chosen in the form

`"zt# � b0Ðz−0"zt# dzt¦bkÐz−k"zt# dzt "12#

where b0 and bk are two complex numbers to be determined[ In using the boundary condition "03#0\
one needs to evaluate `ý"zt# along the hole boundary[ Knowing that zt � eic\ and that u "see Fig[
0# is related to c by

a"sin c¦kh sin kc# � r cos ua"e cos c−kh cos kc# � −r sin u "13#

we have

dzt

dzt

� −
i eic

r"cos u¦t sin u#

`ý"zt# �
i

r"cos u¦t sin u#
"b0 e−ic¦kbk e−ikc# "14#

Substitution of "14#1 into "04#\ and using "03#0\ we obtain

b0 � −a"eh9
0¦ih9

1#:1k½

bk � ah"h9
0−ih9

1#:1k½ "15#

To obtain the explicit expression of f\ integrating "12# yields

`"zt# � ab0"a0t ln z¦a1tz
−1:1# "16#

for k � 0\

`"zt# � a"b0a0t¦kbka2t# ln z¦a"a1tb0−a0tbk#z−1:1¦2ab0a2tz
1:1

¦a"2a3tb0¦a1tbk#z−3:3¦abka3tz
−5:1 "17#

for k � 2\

`"zt# � a"b0a0t¦kbka2t# ln z¦aa1tb0z
−1:1¦kab0a2tz

k−0:"k−0# "18#

¦a"ka3tb0¦a1tbk#z−"k¦0#:"k¦0#¦a0tbkz
0−k:"0−k#¦abka3tz

−1k:1

for other values of k\ where ait "i � 0\ 1 2\ 3# are de_ned by
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a0t �"0−ite#:1\ a1t �"0¦ite#:1\ a2t � h"0¦ite#:1\ a3t � h"0−ite#:1

By checking with "06# and "16# to "18#\ the general solution of U and f can now be assumed as

U � 1 s
M

m�0

Re "AFm"Z#qm#¦1 Re "c`"zt##

f � 1 s
M

m�0

Re "BFm"Z#qm#¦1 Re "d`"zt## "29#

where M � 2 for k � 0\ M � 6 for k � 2\ M � 7 for other values of k\ and

Fm"Z# � diag ð fm"z0# fm"z1# fm"z2# fm"z3#Ł\ m � 0Ð7 "20#

in which

f0"zj# � z−0
j \ f1"zj# �"0¦iepj# ln zj\ f2"zj# �"0¦iepj#z−1

j \

f3"zj# � z−k
j \ f4"zj# �"0¦iepj#z−"k¦0#

j \ f5"zj# �"0¦iepj#z−1k
j \

f6"zj# � "0¦iepj#zk−0
j \ f7"zj# �"0¦iepj#z0−k

j \ "21#

In order to express the right!sides of "29# in terms of real quantities\ the arbitrary complex
constant vector is replaced by

qm � ATqma¦BTqmb "22#

where qma and qmb are real constant vectors[ To determine the unknown constants qma and qmb\ we
employ "06#\ "29# and the identities "00# and "01#[ Substituting "16#Ð"18# and "20#Ð"22# into "03#1\
we obtain

q0a � −aP9
1\ Lq0b−STq0a � aeP9

0q3a � −ahP9
1\ Lq3b−STq3a � −ahP9

0

"ST−eNT
0#q1a−"L¦eN2#q1b � 1a Im ""a0b0¦ka2bk#d#

O00qma¦O01qmb � −1 Re "dmd#O10qma¦O11qmb � −1 Im "dmd# "23#

where m � 2\ 4\ 5\ 6\ 7\ and

O00 � I¦e"N0S
T¦N2H#\ O01 � N2S−NT

0L

O10 � NT
0−ST\ O11 � L¦eN2

d2 � aa1b0:1\ d4 � a"a1bk¦ka3b0#:"k¦0#\ d5 � aa3bk:1\

d6 � kaa2b0:"k−0#\ d7 � aa0bk:"0−k#

Equation "23# includes independent unknown vectors qma and qmb "m � 0Ð7#\ so we need another
equation to ensure the solution to be unique[ Noting the multivalued properties of logarithmic
functions\ the equation can be obtained from the requirement that U is single!valued[ Substituting
the expression of f1"zi# into "29#0\ the single!valued condition of displacement and electric potential
requires that
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"H−eN1#q1a¦"S−eN0#q1b � 1a Im ""a0b0¦ka2bk#c# "24#

Combining "23# and "24#\ we obtain

q0a � −aP9
1\ q0b � aL−0"eP9

0−STP9
1#

q3a � −ahP9
1\ q3b � −ahL−0"P9

0¦STP9
1#

q1a � 1að"L¦eN2#−0"ST−eNT
0#¦"S−eN0#−0"H−eN1#Ł−0""S−eN0#−0

×Im ð"a0b0¦ka2bk#cŁ¦"L¦eN2#−0 Im ð"a0b0¦ka2bk#dŁ#

q1b � 1að"ST−eNT
0#−0"L¦eN2#¦"H−eN1#−0"S−eN0#Ł−0""H−eN1#−0

×Im ð"a0b0¦ka2bk#cŁ−"ST−eNT
0#−0 Im ð"a0b0¦ka2bk#dŁ#

qmb � 1"O−0
00 O01−O−0

10 O11#−0"O−0
10 Im"dmd#−O−0

00 Re"dmd##

qma � 1"O−0
01 O00−O−0

11 O10#−0"O−0
11 Im"dmd#−O−0

01 Re"dmd## "25#

The stress and electric displacement can be obtained by using "7#1\ "29#1 and "25#[ If tn is the
surface traction at a point along the hole boundary of which the normal is n\ we have

tn � −f\m � f\0 sin u−f\1 cos u "26#

and then the normal stress snn\ the shear stresses snm\ sn2\ as well as the electric displacement Dn

are\ respectively\ expressed as

snn � nT"u#tn\ snm � mT"u#tn\ sn2 �"tn#2\ Dn �"tn#3 "27#

3[ Field intensity factors and energy release rate

3[0[ Field intensity factors

As an application of the above solutions\ we present here the _eld intensity factors and energy
release rate for cracks[ A crack of length 1a may be formed by letting e and h in "07# approach
zero[ The solution of SED for the crack problem can then be obtained from "7#\ "02# and "29#1 by
letting e � h � 9[ Thus\ the asymptotic form of SED\ P1\ ahead of the crack tip along the x0!axis\
can be given by

P1 � P�
0

zx1
0−a1

"=x0 = × a# "28#

where

P� � aP9
1¦1 Re "BAT"q1a−1q2a#¦BBT"q1b−1q2b##

With the usual de_nition\ the _eld intensity factors are given by

K � lim
x0:a

z1p"x0−a#P1 � P�X
p

a
"39#
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where K � "KII\ KI\ KIII\ KD#T\ in which KI\ KII\ KIII are the usual stress intensity factors\ and KD is
the so!called {elastic displacement intensity factor|[

3[1[ Ener`y release rate

The energy release rate can be obtained by considering the work done in closing the crack tip
over an in_nitesimal distance Dx\ which can be calculated by "Pak\ 0889#

G � lim
Dx0:9

0
1Dx g

Dx

9

PT
1 "x#DU"x−Dx# dx "30#

where G denotes the energy release rate[ Note that the integration variable x represents the distance
ahead of the crack tip[ Using the solution obtained previously\ the jumps of elastic displacements
and the electric potential "EDEP#\ DU\ across the crack faces can be given by

DU � U"x0\ 9¦#−U"x0\ 9−# � i"AB−0−AB−0#za1−x1
0P9

1

¦ið"AAT−AAT#q2a¦"ABT−ABT#q2bŁ
3x0

a
za1−x1

0

¦i"cb0−c¹b¹0#
x0

a
za1−x1

0 "9 ³ x0 ³ a# "31#

By the substitution of "28# and "31# in "30#\ we have

G �
ip
1

PT

�""AB−0−AB−0#P9
1¦3"AAT−AAT#q2a¦3"ABT−ABT#q2b¦"cb0−c¹b¹0## "32#

4[ Numerical illustration

Since the main purpose of this paper is to present the basic formulations of the proposed method
and demonstrate its feasibility\ the obtained results will be limited to an elliptic hole embedded in
a square piezoelectric plate subjected to a uniform heat ~ow h9

1 at the boundary x1 � 2L "see Fig[
1#[ Thus\ the boundary conditions are as follows ]

h1 � h9
1\ P1 � 9\ on x1 � 2L

h0 � P0 � 9\ on x0 � 2L "33#

In the analysis\ we assume that e � b:a � 9[4\ L � 09a "see Fig[ 1 for the geometrical meaning
of a\ b and L#[ Since the value of L is much larger than that of a\ the present problem can be
approximately viewed as an elliptic hole embedded in an in_nite plate[ For convenience we consider
a piezoelectric ceramic "BaTiO2# plate with an elliptic hole[ The material constants of the plate are
as follows "Dunn\ 0882#]

c00 � 049 GPa\ c01 � 55 GPa\ c11 � 035 GPa\ c22 � 33 GPa\

a00 � 7[42×09−5:K\ a11 � 0[88×09−5:K\ l1 � 9[022×094 N:CK\
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Fig[ 1[ Element mesh used in the example[

Fig[ 2[ Concentration parameter js vs angle u[

e10 � −3[24 C:m1\ e11 � 06[4 C:m1\ e02 � 00[3 C:m1\ k00 � 0004k9\

k11 � 0159k9\ k9 � 7[74×09−01 C1:Nm1

Since the values of the coe.cients of heat conduction for BaTiO2 could not be found in the
literature\ the value k11:k00 � 0[4 and k01 � 9 are assumed[ We will calculate the concentration
coe.cients of SED\ js � k½snn:ag11h

9
1 and jD � k½Dn:a`1h

9
1\ along the hole boundary[ However\ the

numerical results for such a problem are not available in the literature\ to our knowledge[ For
comparison\ the well!known _nite element method is used to obtain the corresponding results[
Owing to symmetry of the problem only one quarter of the problem is modelled by the element
mesh shown in Fig[ 1[ Figures 2 and 3 show the results of js and jD vs the angle u when e � 9[4\
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Fig[ 3[ Concentration parameter jD vs angle u[

and comparison is made with those obtained from _nite element method[ As is evident in Figs 2
and 3\ both js and jD increase with the increase of angle u\ and reach their maximum values at
u � 89>[

5[ Conclusions

The two!dimensional problem of a thermopiezoelectric sheet containing a hole of various shapes
is studied[ A uni_ed analytical solution for the hole problem is derived through use of the extended
Stroh formalism\ conformal mapping and an ingenious selection of arbitrary function F"Z#[ The
solution is suitable for analysing a wide range of hole problems\ in which the hole may be an
ellipse\ a triangle\ a square\ a pentagon\ and the like[ As an application of the solution\ the crack
open displacements\ _eld intensity factors\ and energy release rate are derived[ The numerical
results obtained here are in good agreement with those obtained from the _nite element method[

Acknowledgments

The work of S[W[Y[ was supported by the National Natural Science Foundation of China[
Financial support to Q[!H[Q[ and Y[!W[M[ from the Australian Research Council is also gratefully
acknowledged[

References

Barnett\ D[M[\ Lothe\ J[\ 0864[ Dislocations and line charges in anisotropic piezoelectric insulators[ Physica Status
Solidi B 56\ 094Ð000[

Chen\ W[T[\ 0856[ Plane thermal stress at an insulated hole under uniform heat ~ow in an orthotropic medium[ Journal
of Applied Mechanics 23\ 022Ð025[



Q[!H[ Qin et al[ : International Journal of Solids and Structures 25 "0888# 316Ð328 328

Chung\ M[Y[\ Ting\ T[C[T[\ 0884[ Line force\ charge\ and dislocation in anisotropic piezoelectric composite wedges and
spaces[ Journal of Applied Mechanics 51\ 312Ð317[

Dunn\ M[L[\ 0882[ Micromechanics of coupled electroelastic composites] e}ective thermal expansion and pyroelectric
coe.cients[ Journal of Applied Physics 62\ 4020Ð4039[

Dunn\ M[L[\ 0883[ The e}ects of crack face boundary conditions on the fracture mechanics of piezoelectric solids[
Engineering Fracture Mechanics 37\ 14Ð28[

Evan!Iwanowski\ R[M[\ 0845[ Stress solutions for an in_nite plate with triangular inlay[ Journal of Applied Mechanics
12\ 225Ð227[

Florence\ A[L[\ Goodier\ J[N[\ 0859[ Thermal stresses due to disturbance of uniform heat ~ow by an insulated ovaloid
hole[ Journal of Applied Mechanics 16\ 524Ð528[

Greenspan\ M[\ 0833[ E}ect of a small hole on the stress in a uniformly loaded plate[ Quarterly of Applied Mathematics
1\ 59Ð60[

Hwu\ C[\ 0889a[ Anisotropic plates with various openings under uniform loading[ Journal of Applied Mechanics 46\
699Ð695[

Hwu\ C[\ 0889b[ Thermal stresses in an anisotropic plate disturbed by an insulated elliptic hole or crack[ Journal of
Applied Mechanics 46\ 805Ð811[

Jasiuk\ I[\ Chen\ C[\ Thorpe\ M[F[\ 0883[ Elastic moduli of two dimensional materials with polygonal and elliptical
holes[ Applied Mechanics Reviews 36\ S07ÐS17[

Jong\ T[D[\ 0870[ Stresses around rectangular holes in orthotropic plates[ Journal of Composite Materials 04\ 200Ð217[
Kachanov\ M[\ Tsukrov\ I[\ Sha_ro\ B[\ 0883[ E}ective moduli of solids with cavities of various shapes[ Applied

Mechanics Reviews 36\ S040ÐS063[
Lekhnitskii\ S[G[\ 0857[ Anisotropic Plates[ Gordon and Breach[
Mindlin\ R[D[\ 0863[ Equations of high frequency vibrations of thermopiezoelectric crystal plates[ International Journal

of Solids and Structures 09\ 514Ð526[
Pak\ Y[E[\ 0889[ Crack extension force in a piezoelectric material[ Journal of Applied Mechanics 46\ 536Ð542[
Parton\ V[Z[\ Kudryatvsev\ B[A[\ 0877[ Electromagnetoelasticity[ Gordon and Breach\ New York[
Rajaiah\ K[\ Naik\ N[K[\ 0872[ Optimum quasi!rectangular holes in in_nite orthotropic plates under in!plane loadings[

Journal of Applied Mechanics 49\ 780Ð781[
Sosa\ H[\ 0880[ Plane problems in piezoelectric media with defects[ International Journal of Solids and Structures 17\

380Ð494[
Sosa\ H[\ 0881[ On the fracture mechanics of piezoelectric solids[ International Journal of Solids and Structures 18\

1502Ð1511[
Ting\ T[C[T[\ 0877[ Some identities and the structure of Ni in the Stroh formalism of anisotropic elasticity[ Quarterly of

Applied Mathematics 35\ 098Ð019[
Wu\ C[H[\ 0873[ Plane anisotropic thermoelasticity[ Journal of Applied Mechanics 40\ 613Ð615[
Yu\ S[W[\ Qin\ Q[H[\ 0885[ Damage analysis of thermopiezoelectric properties] Part I and II[ Theoretical and Applied

Fracture Mechanics 14\ 152Ð177[
Zhang\ T[Y[\ Tong\ P[\ 0885[ Fracture mechanics for a mode III crack in a piezoelectric material[ International Journal

of Solids and Structures 22\ 232Ð248[
Zimmerman\ R[W[\ 0875[ Compressibility of two!dimensional cavities of various shapes[ Journal of Applied Mechanics

42\ 499Ð493[


